skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Girigoudar, Kshitij"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Growing penetrations of single-phase distributed generation such as rooftop solar photovoltaic (PV) systems can increase voltage unbalance in distribution grids. However, PV systems are also capable of providing reactive power compensation to reduce unbalance. In this paper, we compare two methods to mitigate voltage unbalance with solar PV inverters: a centralized optimization-based method utilizing a three-phase optimal power flow formulation and a distributed approach based on Steinmetz design. While the Steinmetz-based method is computationally simple and does not require extensive communication or full network data, it generally leads to less unbalance improvement and more voltage constraint violations than the optimization-based method. In order to improve the performance of the Steinmetz-based method without adding the full complexity of the optimization-based method, we propose an integrated method that incorporates design parameters computed from the set-points generated by the optimization-based method into the Steinmetz-based method. We test and compare all methods on a large three-phase distribution feeder with time-varying load and PV data. The simulation results indicate trade-offs between the methods in terms of computation time, voltage unbalance reduction, and constraint violations. We find that the integrated method can provide a good balance between performance and information/communication requirements. 
    more » « less